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I. INTRODUCTION

Ion beams have attracted considerable interest in recent years as a result

of their potential application as drivers for inertial confinement fusion.

Due to the state-of-the-art of accelerator technology, however, theoretical

advances in beam propagation have focused on the properties of high-energy

(high-gamma) electron beams. Some important simplifying assumptions are

made for highly relativistic beams which do not apply at low-gamma. In past

studies (Refs. 1 and 2), we began to ra these model assumptions to address

the axi-symmetric evolution of ion beams. In this &A4-44in report on the

propagation of low-gamma ion beams, we explore the resistive hose instability

with longitudinal velocity-spread.

-For energies of interest, the theoretical models of electron beam propagation

cannot be directly applied to ions because of their low relativistic gamma i-..

(y) factors. For example, for kinetic energy equal to 50 MeV,' 99. for f ,.*

electrons compared to'y = 1.05 for protons. If the beam propagates in the
longitudinal direction (along the z-axis), the effective inertial mass

of the beam particles in the z-direction is given approximately byy , where

m is the particle rest mass. This suggests that light ions are considerably

more susceptible to longitudinal acceleration than electrons of equivalent

kinetic energy; the longitudinal particle-motion cannot be ignored as in

the electron case. This adds a new dimension to ion beam propagation.

The consequences of the longitudinal motion on beam stability can be divided

into three categories:

(1) Longitudinal spreading of the beam pulse due to longitudinal

velocity-spread (longitudinal temperature);

.'(2) Longitudinal mass (bunching) instability; and

(3) Resistive hose instability with l9ngitudinal velocity-
spread.
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Categories (1) and (2) are unique to light-ion propagation, while (3) requires

modification to existing electron-beam hose stability theory.

In order to address issue (1) above, we developed the low-y propagation code

LOGAP (Ref. 1) which models the axi-symmetric (monopole) evolution of a

single pulse (with longitudinal and transverse degrees of freedom). LOGAP

consists of four basic components: electromagnetic field algorithm GEM, which

generates both longitudinal and radial field profiles in real-time; the

highly-developed, chemistry package BMCOND, which generates the conductivity

profiles in the ambient gas resulting from the passage of the beam (Ref. 3);

the HIGAP algorithm for solving the radial-envelope equation of motion

(Ref. 3 and 4); and the longitudinal dispersion algorithm LNGDSP whici

describes the longitudinal flow of beam particles via a fluid model. A

detailed discussion of LOGAP is found in References 1 and 2; for completeness,

however, we provide in Appendix A excerpts from Reference 1 describing both

GEM and LNGDSP. A stability analysis of the GEM field algorithm is given in

Reference 2 and is reproduced here in Appendix B.

Longitudinal spreading of the beam pulse is a concern since it could transform

a given pulse into a longer one with lower current which would then be less

hose-stable. It has been suggested (Ref. 5) that the spreading might be

contained by the self-induced longitudinal electric field at the front and

rear of the pulse, keeping the beam particles trapped inside. Preliminary

results from LOGAP to date have failed to verify the existence of this self-

trapped mode.

It should be emphasized that in LOGAP longitudinal and transverse degrees

of freedom are essentially decoupled. If we partition the beam particles into

subgroups according to their vz-velocity, then LOGAP assumes that the

current-density of all subsets, regardless of vz , have the same radial

profile. A more realistic approach would be to allow the different subsets

to expand radially at different rates; the low-velocity subgroups would

expand faster since their particle radial-motion is confined by a relatively

2



weaker magnetic pinch force. The very low velocity particles (which in LOGAP

* contribute to the longitudinal spreading of the pulse tail) may "evaporate"

in the radial direction. Therefore, LOGAP should be appropriately modified

to account for transverse evaporation for a definitive test of the self-

trapped pulse mode.

P
The longitudinal bunching instability has been examined by Sloan et. al.

(Ref. 6) and is found to be Landau damped when the longitudinal rms velocity

spread is greater than some minimum value [see Eq. (104) below]. For a

p k50 MeV, 10 ka) proton beam, this minimum vales is n-.075 v0 , where v0 is

the mean velocity of beam particles. This should be well satisfied at the

exit-port of an Auto-Resonant Accelerator (ARA), for example [see Eq. (101)

below]; if not, the bunching instability itself and/or the self-induced

* electric field will probably ensure that the rms velocity-spread within the

pulse is more than enough to stabilize it.

In the remainder of this rep,.', we examine the effects of longitudinal

*velocity-spread on the resistive hose instability. The rigid beam model

and the multi-disk, distributed-mass model of Lee (Ref. 7) are both

modified to account for the phase-mixing associated with the

distribution of longitudinal velocities. Beam particles are partitioned

into subgroups according to their v Z-velocity with each subset experiencing

an independent transverse displacement. The resulting equations of motion

are solved for mode growth in the context of an initial-value problem with

finite pulse length. Upper-bounds in hose-mode growth are found via saddle-

point analysis as well as conditions for "absolute" hose stability.

The results of this preliminary study suggest that the light-ion, low-y

beam may have a hose stability advarwtage over a comparable electron beam.

For example, the (50 MeV, 10 ka) proton beam with longitudinal rms velocity-

spread of ,.1 v0 has an estimated hose-stable pulse length that is nearly

twice the zero-spread model prediction. With an rms spread of .26 v0, it

approaches an "absolute" hose-stable regime; but, if the pulse spreads

longitudinally (i.e., no self-trapping), the beam current decreases until

hose-growth recovers.



The analysis in this report is semi-quantitative in that it is based on a

single-mode approach with various simplifying assumptions: the conductivity

channel is assumed fixed in space independent of beam evolution; the plasma

return currents have a prescribed radial-profile; and the longitudinal and

transverse equations of motion are decoupled. In a comprehensive treatment,

these assumptions should be relaxed and the equations of motion solved

numerically.

In Section II, the basic particle and electromagnetic field equations are

presented. The equilibrium state is described in Section III with emphasis

on the isothermal Bennett distribution and the longitudinal velocity distri-

bution. Hose-like perturbations are considered in Section IV; the rigid-

beam dispersion equation with longitudinal velocity-spread is derived in

Section iV.A.; and the modified distributed-mass model and the single-mode

dispersion equation is derived in Section IV.B. The dispersion equations

are analyzed in Sections V.A. and V.B., respectively. And in Section VI,

we interpret the results in the context of the ARA and longitudinal mass

instability.

b4
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II. PARTICLE AND FIELD EQUATIONS

We consider a beam of ions with mass m and charge Zbe propagating with a

mean velocity v0 in the positive z-direction through an ionized gas. The

ambient gas-plasma is characterized in the present study by a real, scalar

conductivity a which is assumed to be known and independent of beam pertur-

bations. In practice, the a-channel could be strongly affected by the

passage of the beam through the gas via direct collisional ionization and

electromagnetic field breakdown, but these effects are neglected here.

The beam current Ib is assumed to be small compared to the Alfv6n current

(IA):

I2 << I 41mcm
b b o YA°m=oo() - (17 ka) (1)

eZwRr b R1 e Z-b

where y = (1 is the relativistic factor for the mean velocity
0

vo = oc, me is the electron ...ss and Ro is the resistance of free space

(Ro = 376.73 ohm). Thus, the paraxial approximation is adopted, i.e.,

IPil << Po = Yomv0  (2)

where JP±1 refers to the amplitude of the single-particle transverse

momentum.

We also assume that a is large enough that charge-neutralization time is

small compared to the magnetic decay time, and hence, the displacement

current can be neglected. Together with the paraxial assumption (2),
this allows a reduction of Ampere's law to the form

V2A R0a 3A z
z c at -Jbz(3

where the electromagnetic fields are adequately described by the longitudinal

component of the magnetic potential Az:5
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H± - ± x (A z 6 Z)  (4)

R° a~ (5)
Ez - c 3t(5

The transverse components (x,y) are denoted by the symbol (), and Jbz is

the beam current-density in the z-direction.

A particular beam particle with velocity v = (vi,vz) satisfies the equations

of motion

dp Z [Z + (0 DA 1 )Az (6)

ed v Az (7)
dt c vz ± Az(7

By the paraxial assumption (2), we ignore the variations in p and assume

that vz and the relativistic factors y = [C- (V2/C)- (v2/c ) 12 are

constant for each particle orbit, i.e.,

dp z d
_d (ymv) = 0 (8)

The mean particle momentum is expressed by

<Pz > = Po = YOmVo (9)

where the bracket < > denotes the instantaneous average over all beam

particles in a disk at (z,t). However, it is also assumed that p0 be

independent of (z,t) over the time scales of interest, The energy of a

particle with vz = 0 is given by

E0 Yomc 2  (10)

6



It is convenient to express the particle energy and momentum in terms of

the momentum variable q and velocity spread v where

q :E P - P0  ymV-yomV (1)

V H v(z  0  (12)

with q << p . By (8), both q and v are considered constants of motion. To

order q2 Ay m2c2), we have

2 o qomC2 2 + 2 2

E 3ymc 2 Y0mc 2 0m 2 3 (13)om  2y 3m 2y{om

0
p1 = Y0 mV, (14)

Expanding (11) about v0 , it is easily shown that

yomv (15)

It follows that approximation (8) is valid so long as

S << 0o 
(16)

Y3 YOYO0
0

Hence, the transverse single particle equation of motion (7) can be

approximated to lowest order by

d 2- eZbRo

dt2  = oC vo  V Az  
(17)

Note that the r.h.s. of Eq. (17) is independent of v. This allows us to

treat particles with different vz by the same pinch-potential. In sub-

sequent sections, beam particles are divided into subgroups according to

their longitudinal vz velocity. Eq. (17) implies that all subsets, regard-

less of vz , have the same equilibrium radial-profile.
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For closure, we need the distribution function f(r,z, v, V ,t)d3 r d3v which

represents the number of beam ions in the phase-space volume d2 rl dz d 2 dv

The beam current density is then defined by

Jbz - eZb fd2vi fdvz vz f = eZbvon (18)

where n is the beam-particle density. From continuity and Eqs. (7) and (8),

f satisfies the Vlasov equation

af eZbR°V

- + f + v +2f+ A z f = 0 (19)
atc z PI

It is useful to introduce the variable C defined by

E =vt - z (20)

and replace the independent variables (z,t) by ( ,7) in all the relevant

equations. The derivatives transform as follows:

(21a)
az az ac

a a (21b)at 0o3

d _a + V - _ (21c)_ •dt a t z a > vo dz -Vz -az - ac

Employing (20) and (21) in Eqs. (3), (17), and (19), we arrive at our final

set of model equations (dropping subscript z from now on)

2 R0oV0 aA (22)
A1 - c a3C

2 eZ Rdz-- _ bo A (23)

,z2 r = I

8



L c ~bJ I a-LJdv vf (24)

d f + 4 + --- A- f 0(25)
o z vLi c 1 Vi 0j

These are employed in the following sections to treat the resistive hose
instability. We begin by explorinc, the axi-symmetric equilibr-ium1 state.



III. EQUILIBRIUM

Our equilibrium beam is assumed to be cylindrically symmetric about the

z-axis. Adopting cylindrical coordinates (ro,z), the single particle

equation (23) becomes

d2-
2(26)

dz
eZb dA

k2  (r) =_ b- - - 1 - (27)
y mv2 r dr

0 0

where k is the betatron frequency and A refers to the equilibrium potential

which by (22) and (24) satisfies

I d dA0  Ro0av 0 A
r dr dr - bo + B -(1 - 6m) Jbo (28)

Jbo = eZb jd2vi fv v f0  (29)

In (28) we have assumed that the plasma return current-density is represented

by -6m Jbo ' where the current neutralization factor £m is assumed to be a

constant. This is a reasonable approximation when 6m < .5 For ,> .5,

since the return current density has a radial profile considerably different

from Jbo' the r.h.s. of (28) is not valid.

Since the equilibrium distribution function f0 is an integral of motion,

it can be written as a function of the constants of motion. We choose

the separable form

fo = G1 (w) F(v) (30)

whee _- v2 2 eZbR°6°
where W = 2 2 A (31)

0 0

is a constant of motion according to Eq. (26) and the velocity spread v

is assumed constant by our model assumption (8). G and F are normalized

10



such that

no(r) = 2V G1  (32)

1 =J d F (33)

where n is the equilibrium particle density.

For the Maxwellian distribution, G and F take the form

GM e -(w/u~)
G u (4M 2

'u'
FM - e 2 2  (35)

where the mean-square vlocities are defined by

u2 - <v2> (36)

U2 E <2> (37)

The normalization constraints (32) and (33) are appropriately satisfied.

The transverse distribution GM is the important isothermal case described

by Bennett (Ref. 8 ). It has been shown by Lee et. al. (Refs. 4 and 9

that the Bennett distribution is a good approximation to the pinch-

equilibrium state.

It can be readily verified that the Bennett profile

i Ib 1 38

Jbo B - 2 2 2(38)na2  ( - r2a)

and the magnetic potential

(1 - 6m) 'b

A0  A (n (1 + r2/a2) (39)B ~ 4T

-11
1 . .. . .. , " . ., ,' ' - 2 . " • ,



satisfy Eqs. (28), (29), (31), and (34), with

Ib = eZb no Vo 'a2  (40)

Taking the virial moment of (26), the mean-square transverse velocity

satisfies the equilibrium condition

2 <v2>
uI  Ib

I = <k2 r2> = (- ) b (41)

0 0

with the Alfv6n current IA defined by (1). This velocity-spread is due

entirely to betatron oscillations -- energy-spread effects are neglected.

For later reference, we express the longitudinal mean-square velocity

spread u2 in terms of the energy spread tE = (y - y0 )mC
2 . From Eqs. (13)

through (15), we derive the relation

u2  <v2> < 2(/E(
2 - 2 - 12 E 2i o (4 2 )

v - (Y 1)2 E2

E 0  Y0 mc
2  (43)

Note that if we attribute the longitudinal velocity-spread to betatron

motion only.--i.e., ignoring energy-spread--then

Iii _ ll(-d~ b (44)--2 2y 2 v2 2y 2 IA  {4
Vo betatron yoo 20 o

which places a lower bound on the longituainal temperature.

As a consequence of ignoring the v-dependence in k (r), Eq. (27), the radial

profile of the equilibrium current is independent of the particular subset

of beam particles with the same v. This is expressed explicitly by intro-

ducing the partial current-density Jbo(rv) for the subset of particles

12S .



with longitudinal velocity v v 0 + v i

abo(rv) = F(v) Jbo(r) (45)

Jbo(r) = fd Jbo(r\) (46)

In subsequent sections, we shall treat each subset of particles separately

in order to account for the longitudinal velocity effects on hose.

13



IV. HOSE DISPERSION EQUATIONS

Hose instability is treated by considering small amplitude perturbations of

the form

b - bo 3b e (47a)

6Jb(v) = Jb(v)- Jbo iv) = Jbl (v ) e' (47b)

6A = A- Ao = A1 e o (47c)

6 f - fo = f e io (47d)

where the zero subscript refers to the axi-sym:etric equilibrium state

discussed in the last section. Jh(r,,z,v)dv represents the partial current-

density of beam particles with longitudinal velocity between (v + v) and
1 0

(v0 + v + dv). The perturbed amplitudes (Jb1'.A' fI) are assumed to be

small. Note that the azimuthal dependence e'i in (47) is selected

specifically for the hose mode.

In this present study, we consider the longitudinal velocity-spread effects

, in the contexts of two models: the rigid-beam and field model; and the nmulti-

disk distributed-mass model of Reference 7.

14



IV.A. Rigid-Beam and Field Model

Following the rigid-beam development of Referece 7 , we represent the

perturbed, partial current-density Jbl to lowesL order by

^ ddbo

Obl ( -X ,,z) --d-- (48)

An equation of motion for the transverse displacement amplitude X can be

derived by averaging Eq. (23) over all particles in the disk (F,z) with

V (= V 0 + ). Employing the rigid-field assumption,

dA
AI( ) = - D(1,) dr0 (49)

we find

A2  eZb R T7 2 (0

dz2  YOmcvoI b fr 50
0

With the Bennett profile Jbo = JB Eq. (38), (50) simplifies to

dX 2 ^
V k 2 [D([) - X (,z)] (51)

dz2  - ks

with

ksB 1 b 2 b 0 (52)

SB 6ima Y~mcV 0

2 ( 6m) I b  (5

3 a 2  1A

The perturbed form of Ampere's law (22) is

15
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.~ ..... ............

d r Ad Ry v A(4d-& r d- r A1  - c -6 - =  - Jbl =  d ' Jbl (4

Substituting the rigid-beam and field representations (48) and (49) into

(54), multiplying by dA0/dr, and integrating over the radius, we find the

simple relation

D(t) + D1 ) =% (51- 5

where

<X(%,z)> j F(v) X( ,z) (56)

For the Bennett equilibrium, the dipole magnetic-decay length * I is defined

by

2 3 R -° f dr 0(r) r2  22 (57)

2 a 0 (1 + r /a 2

For,

o(r) 2 1 2 2 (58)

we have

R= °a2 ° (59)

1I 8

Equations (51), (55), and (56) specify completely the generalization of the

rigid-beam model for longitudinal velocity-spread. It differs from the zero

temperature model (Ref. 7 ) by the full z-derivative in (51) and the v -

average (56).

If initial conditions are imposed at z = 0 for > 0 (where the pulse head

begins at e = 0), then a Laplace transform analysis of Eqs. (51) and (55)

results in growth for the displacement <X> bounded by

16



Jd H(Qo ) eg(o'C'z) (60a)

where H(Qo) depends on the initial perturbation of the pulse. The growth-

phase exponent g is expressed by

Q
g - - z - i (60b)

where w(Q ) is extracted from the single-mode dispersion equation derived
0

below. Note that the contour of integration lies in the upper (Iii Qo > 0)

half-plane.

In a single-mode approach, we assume

D, X , <X> e - i(kz-wt) (61a)

Transforming to the independent variables (L,z), Eq. (20), we have

D, X , <X> c e-i[(%o/vo )z + (W/Vo I (61b)

where % = w - kv (61c)

Substituting (61) into Eqs. (51) and (55), employing the z-derivative (21c),

we arrive at the rigid-beam dispersion equation

fdv -(,)) 2 - (62)
m [l1-(Q o_kV) I

where we have tra-sformed to the dimensionless units

0 s k(63a)
v ok Bk sB

17



k (63b)
vo ksB 1 sB

V U

-=>u (63c)V0  V0o 0

We now consider various specific forms for the distribution F(v).

We recover the cold fluid (or zero temperature) results of Reference 7 by

choosing

Fc(v) = 6(v) (64)

With this distribution, (62) becomes

-iW(Qo)A 1 2 - 1 (65)
(1 -m)[1 -

which agrees with the usual form of the rigid-beam dispersion relation --

with the exception of the current-neutralization factor in the denominator

which is usually set equal to zero.

For finite temperature hose, the Lorentzian distribution

FL(v)- (66)
L" 7 v 2+ A2

is particularly convenient since the integral in (62) can be performed

analytically. Any function K(v) which is analytic in the lower half-

plant (Im v < o) with peak amplitude less than I I2 satisfies the relation

fd v FL(v) K(v) K(v -iA) (67)

Hence, (62) becomes

18



(1 - )- (Q° + ikA)2 ]  (68)

This relation is analysed in Section V where its consequences on hose
growth are discussed.

The Lorentzian tends to overestimate the effects of longitudinal velocity
spread since the mean of v2 is divergent. However, in the limit n° -+ 0,
(68) agrees with the Maxwellian result [employing the distribution (35)]
to lowest order in ku and kA if

u - A (69)

Numerical comparisons suggest that the real part of the r.h.s. of (68)
agrees reasonably well with the Maxwellian weighted results; differences

in growth rates are small (< 40%).

19
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IV.B. Distributed-Mass Model

The distributed-mass model was introduced by Lee (Ref. 7 ) to incorporate

phase-maxing -- associated with the spread in betatron frequency k --

into the rigid-beam model. Justification for the model relies on the agrde-

ment of its predictions with the results of experiment and particle simula-

tions. In this section, we generalize it to account for longitudinal velocity

spread. The procedure is essentially identical to the rigid-beam developiijent

in Section IV.A.

Following Reference 7 , we associate with each subset of particles in

(\,\+d\) a mass distribution

m M )2(70)
k m

where A is a continuous variable with range 0< p< 1, and km is the maximum

betatron frequency for a particular beam profile, i.e.,

k 2  k 2 (r = 0) (71)m k1

From (27) and (28), we find

abo(0)k m =  27, (1 -f6m) - 1 (72)

which for the Bennett equilibrium gives

2 2(1 - ' Ib
mB a 2 1A

We let XP, ( ,z) represent the displacement of a disk of particles at (Q,z)

with mass m and velocity v = v0 + v. The center of current is now given by

<<X(Cz)>> pfi h(1) v F(v) X" P( ,z) (74)

0 -C

20
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where h(p) dp denotes the fraction of disks with mass ti and is normalized
ii

to one. Following the arguments of Ref. 7 , we choose

h(p) = 6p (1 - p) (75)

which is zero at ji 0,1 and peaks at 1 i/2.

Substituting (70) into (50), we get a new equation of motion for

d2

__U,= pk [D() - x (,z)76)
dz 2  mB -' , v

and Ampere's relation (55) is modified to

DD = <x!_<(Lz)_> (77)D( +t I  I - 6 m

These two equations along with (74) completely specify the distributed-mass

model with longitudinal velocity spread.

The single-mode dispersion equation for the distributed-mass model follows

substituting (61) in Eqs. (76) and (77):

)x 1 = I CO Fv

-i() ]d dp 6p(I - p,) dv - I (78)
0f -(Qo-kv)

where the dimensionless units now correspond to setting kmB = 1 rather

than ksB in (63). Note that for zero velocity-spread -- i.e., F(v) = Fc(v)

in (64) -- we recover the distributed-mass dispersion result of Lee with

the addition of the current neutralization factor 6m.

A tractable solution of (78) for finite velocity-spread follows by

employing the Lorentzian distribution FL of (66). Since i is real and the

singular points {kv S} (from setting the denominator of the integrand equal

to zero) lie in the upper half-plane (for Imo > 0), we simply replace

21
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kv by -ik/A. The inLcgration over' can 1oW be performed to give

--- n(P-0 ){,, + G( ° + ikA)) (79)

where

G~) 6 2  S2 + S2 (1 _ S2) n(Y)(Ja

for Im S > 0 and 0 < Re S < 1

The branch points of G(S) lie at S = O,_1 Since the o7-contour of inte-

gration in (60) lies in the upper half-plane, we choose branch lines that

extend to -i- in the lower half-plane. On the primary sheet for !iw S = 0,

G(S) is analytically continued into -I < Re S < 0 and IRe SI > 1 as follows:

+ir + kn --- 2 , 0 < Re S < 1

n(1S) 1 -1 + k - 2 , -1 < Re S < 0 (80b)

kni s  , IRe S1 > 1

For Im S 0, the prescription for determining G(S) is now completely specified.

In the limit f2o -0 0, and p -> 0 (or 1), the Lorentzian distribution in (78)

reproduces the Mlaxwellian result [employing the F M distribution in (35)] to

lowest order if

A- u = <v2> (81)

Generally, however, the Lorentzian result (79) by equating A with u tends

to overestimate the effects of longitudinal velocity-spread -- but by less

than 40%. This is more than adequate for our present purposes.

The dispersion equation for the distributed-mass model with finite velocity-

spread is now completely specified. Its implications on hose growth are

explored in the following section.

22
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V. ANALYSIS OF DISPERSION RELATI(C:S

V.A. Rigid-Beam

Growth in the beam displacoment <X< as a funct.ion of (K .z) is icrasured hy

the leading amplitude (09). The arowth-phase exponent qj for the rigid- Lote;

model follows from (68); with ksBZ z and ksB , we have

g(%) = -i oZ _ i,<B(o), - (82)
( p + k: 2

-iWURB(Qo)x 0 8b[1 (o' + i'(8 2
b)

where we have set 0 for convenience. For the case k/.. 0, Figure 1

gives the Im B  0 contuur in complex (?o-space; the shaded region corresponds

to Im to > 0 i.e. , where hose growth occurs -- and the broken-line marks

the inversion p--contour of integration for Equation (60). The io-contour

is not permitted to lie entirely in the lower half-plane since there are

intrinsic singularities at P = +1. Since Im ro and/or Im (kR must be greater

than zero over some part of the u o-contour, unstable hose-growth results.

For kA > 0, the real axis (Im Po = 0 in Figure 1) shifts up by an amount kji.

For kA > .3536, the unstable region lies entirely in the lower half-plane.

Thus, the Qo-contour can be taken along the real axis, and hose stability is

established. However, the rms-velocity spread u must satisfy the condition

ku > .36 (k sBvo) (83)

which is unrealistic in practice.

0 For a general understanding of hose growth, we pass the Q inversion ccntour

through a saddle point. The saddle point po satisfies the condition

2(Q os + ik,) (84)(a --o0 -iZ + 2 _F( 4

os - (os + ikA) ]
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For zX >> r and 11-,oI .- 1, we find

OS IX

The damping of hose growth due to longitudinal velocity spread is rowd explicit

in the -zk/, term of (86).

If we maximize g with respect to z with , fixed, we find

(=0 Po 0 (87a)z

g - + - (87b),max 4Xk A

This maximum occurs at

Z 4k 232 (87c)

Thus, for A 0, we have unlimited growth for all as a function of z --

i.e., an absolute instability -- which concurs with the rigid-beam result

of Reference 7.

For finite velocity spread, the hose displacement amplitude peaks at each

c-disk with maximum exponent gmax and then begins to damp. The maximum dis-

placement occurs at larger z0  with increasing r according to (87c). Thus,

the hose displacement convects back into the pulse (towards larger ) as it

grows in amplitude. It is straight-forward to verify that the convection

velocity is given by

V _ = E2  '4Xk 2A2  (88)
0

If we allow a maximum displacement gain of 103 , for example, the maximumimax

pulse length Lm permitted for hose stable propagation is

25
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Lma x 28 X kA (89)

according to (87b). If we cunsider a proton beam with

E - ic2 = 50 fleV0

Ib = 10 ka (90a)

a = .5 cm

we find .1 < X < 1 and k sB .051. Condition" (89) then becomes

Lpax < (5. 5 meters) ku- (90b)
Sk 

sB vo

Thus, longitudinal velocity spread alone does not ensure'useful hose-stable

pulses without imposing severe conditions on the rms velocity-spread.

For im > 0, the growth-phase exponent (82) aquires an additional growth

component

+- A 
(91)lm

which increases the maximum displacement at . Since we are interested in

the relative importance of longitudinal velocity-spread on the hose mode, we

ignore this plasma return-current effect in the present treatment. Note

again that when the denominator in (91) becomes less than .5, the present

model begins to loose its validity. For significant current-neutralization,

we must take into account the proper radial-profile of conductivity and

its dipole perturbation.
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V.B. Distributed-Mass Model

The growth-phase exponent for the distributed-mass model is given by (79)

with kmBz->z and kB> :

) = -io + G(Qo + ikA) (92)

with G defined by (80) and 0. For kA = 0, the inversion po-contour for

(60a) is plotted in Figure 2. The shaded region corresponds to Re G > 0 or

unstable hose growth. The branch cuts are designated by dark, wavy lines

extending to -i-. Since the inversion %o-con'tour must lie above the branch

points 1o = ±1,0, it can not be deformcd to lie outside the region where

either Im o > 0 or Re G > 0. Therefore, hose instability cannot be avoided.

For finite velocity-spread, the branch points and the Re G > 0 shaded region

shift down by an amount -ikA. This effect is illustrated in Figure 3 where

Re G is plotted as a function -' Re Po for various values of kA (with Im jo = 0).

With kA > .183, the unstable region lies entirely in the lower half-plane and

the 1o-contour can be taken along the real axis. Thus, we achieve absolute

hose stability with an rms velocity-spread u satisfying

ku > .183 (kBVo) (93)mB o

which is nearly a factor of two less than rigid-beam condition (83) with no

k -mixing.

We perform a saddle-point analysis on (92) to extract additional information

about the hose instability. The saddle point Qos satisfies the condition

-q .=0 (94)
0os

The values of Q have been computed numerically (assuming Im Qos 0 0) and

are plotted in Figure 4 (solid-line) as a function of kA. Values of the

maximum growth-exponent Re G(s ) have also been determined. For these

Os
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values of S and kA, we compuLe the saddle point conditi on

v c s (95),(ha C) s

which represents the rate at which the peak wavc-pack(et convects back t..'L)ds

larger I.. Values of vc/A are also plotted in Figure 4 (dashed--lire) in tati,.

of k ',.

For a given kA, we can compute the upper bound on hose growth fuv a particular

c-disk by

<X)> C eRe G(%5  (96)

When the imiaximum is achieved, the displacement amplitude commencPs to d,,n p.

By expression (95), we see that the hose growth saturates at larger 7 for

increasing . If we allow a maxii:-,un gaii of 103, the pulse lenggth is limited

by

ma 7(97)
os

in units of k-I

For a proton beam with parameters (90a), we have for kA- .05, for examiple,

kmB "' .088 and

Lmax < 2.0 meters [for ku .05 (kmBvo)] (98)

which is %7.3 times longer than that allowed by the rigid-beam model (90b)

with no k -mixing. For kA = .1, we find

Lmax < 3.6 meters [for ku .1 (k v )] (99)p mB o

31



To appreciate the effects of longitudinal velocity-spread alone, we compare

(98) and (99) to the cold-fluid result (k,.n 0):

Lmax < 1.2 meters [ku = 01 (100)

p

which is a factor of three less than the hose-stable pulse with ku .1 (k. v

Note that (98) - (100) are approximate upper-bounds on hose-stable pulse

length. Inserting the proper units back into (97) and employing the bencttt

results (59) and (73), we find Lla x is proportional to beam current. A
p

decrease in beam current due to longitudinal pulse-spreading would reduce

the hose-stable pulse length.
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VI. CONCLUSION

In Section V, the distrihuted-mass model with lonqi tudi n,,1 veloci-ty-spreae

provides approximate conditions for hose-stabl1 proation. ut is useful

to compare these results with realisLic collective-accelerator projecLibn.;

and with the requirements for longitudinal mass stahiity.

At the exit-purt of the Auto-Resonant AcceleraLor (bRA), thi m2aximum s"a

in energy is estimaled to be

/max I1/2
LIL - 6. 3 P' o 1 -loEO_(]1 M

E0

where me is the elec'ron mass and m is the ion mass (Ref. 10 ). This result

is due predol; inantly to longitudinal velocity-spreFd with ion axial-motii

confined by the cyclotron wave potential. For the 50 MeV proton bran. (>a ,

the ARA would produce

()
ma x

- .04 (o?)

The associated rms velocity-spread, according to relation (42), is sootk,,'i
in the range

.1< u <.2 (10k)

v0

Comparing this to predictions (98) and (99), with k - .5 kmB, we would exCct
a significant increase in hose-stable pulse-length due to longitudinal
velocity-spread at the exit-port.

After the beam propagates a distance, some of the longitudinal temperature

is converted into transverse temperature by the azimuthal magnetic self-

field of the beam. A lower-bound on longitudinal temperature may be found

in the dynamics of the longitudinal mass (or bunching) instability. Sloan

II •33
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et. al. (Pef. 6 ) have sho.' that the lorid';t:JdirlL! bLocking in:,Iubilit' irn

the axi-syiimoitric nonopole mOe i5 Landau d....ed w

2,b 0 )u2 2 b-2- -- (104)
v _ . 2 1

0 0 0

In fact, this condition is eiiirced by bhe instaility itsel1f: as thY<.

bunching m..odl jrod,.e. iii Lil , the rlls l oci ty s :)reoc inrc-c s u,,til

(104) is satisfied. For the 50 t.1eV er.,ut beae; exampl, v,. find

.-) .075 (105)

vhich is reasonably close 1o the 1c...er Lound estimate (103) produced at

the exit-port of an APP,. 7hus, the bunching inst .ility apr r !-s to :1)wintlrii

the I ongi tud i ial te;,;peratu re reC oi red far improved hose- s .abi 1 i t

V.- conclu i fre;: these prel imi n ry results that the 1 .-y light-ion beam w-uv

h,. ve an advan!age over a comparable electron beam insofear as the resistive

hose instLbility is concerncd. The degrce of advantace (if any) depends, of

course, on the amount of velocity-spreod the pulse can tolerate -- sprearitlJq
of the pulse length would reduce its current and decrease its hose-stable
length. It has been suggested that a "self-trapped mode" may exist where

the beam particles are confined longitudinally by the self-induced electric

fields at the front and rear of the pulse (Ref. 5). Verification of this

self-trapi;cd state will require a numerical study of the dynamic coupling of

longitudinal and transverse degrees of freedom [e.g., a modified LOGAP code

(Refs. 1 and 2)].

A more precise quantitative estimate of this hose advantage would also

require a comprehensive numerical study of hose dynamics: a self-consistent

model with a realistic c-channel and with the transverse and longitudinal

degrees of freedom properly coupled. The latter requirement would permit

some of the longitudinal temperature to be converted to the transverse plane

by the magnetic self-field. This would result in a new isothermal equilibrium

state with a modified beam-current radial--profile.
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to ne nvovi, cly tlie rins-radi~l., and its tia I(S.lKVC

'Phi rd, weo treat the radial and longi~tudinalti dogr-es of

freedom separately.

FWe consider a sin;,le-puilFse of ionis moving- in
the positive z direction. At timeo t=O, the mean x'eloci,,\

v z(t=O) is assumed to ho known. At someo time t :O, w o~

our attention on som,,e thin slice of beami cut normal to thc

direction z and moving with some mean velocity v~ (z,t).

Clearly, at constant t, if v zvaries with z, then beam

particles wvill move into neighboring slices, resulting-

* in a shift in v zand charge density.
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with tb':: fcllowx,'i re c:C*.:.'ot1V :

( . )

toe fluid derpt.ion, the Euer Jn time der at V

transformation is

tll ,,I f (t3t I'l 0  -0.

S+V) (A 3)

where Vz(c) reprecCnts the mean u in the sicc of beam

at (El).
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fo-1c 11 o i t o I(IC tv .) 1 C j S c1\o Ii 1 c nj h
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If ~ ~ ~ ~ lr )hr-t -;,-i

0
tA( r. A + %7 r)5,'

where,

D _) a

- -(A.Ga)
D A 0

D a+ 0 - (A.Ob)
DB 0

D + D(A .6c)

AA



trn.Isfor ; ,.io'.; (. ]) wit" (A. 2), 1 ;( i o A

bcco):ine,

(1--F~) + Z g 1~11 0

+ +

(A.4~

+ Ujo ] i4 2

where %e have introducedl the unit coiivcx sion,

Vr 
- o

Ez

z0 froe=space impedance

376. 74 (ohmrs)
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We refer to the :Lr2(.5h) P:-- (: tr~ Jt LI'C

In Fi gure A. I , cfi] 11),;4- our Itrn C, ing, 4rd ae I

charact oP isi. -i lin(-s of j n t e,- va L! on . I w nowN t he , ha

of the fi eld.,-,. ?l1 for all (Cr),thun th v U.,, at

C±AC~ a r( f ou;:d by rtiguerda12 Ih

dii- eet ly f ro:'i (i . i) u ing tr- lice for 1. o] I ij i, Jn (. 7) a.

are ..- in teirn.tn of the t:'xo The ab n(

IIentho10d o f soluIL, io01 i s now)viC es C, It :;ally ide C,1) i C.a I t o t :L
of CATHMY in -1. 3 h i]Uvle r pae

explicitly in 1, and iep'licitly in the radi1al dmain

Our treatmnt ol the (B) and (C) chrce tiS

has two phases (see Figure A. I ) . First , at the start,

when the field profi] es are evolving rapidly, the r,-stcp:;

%remall and the echarsezteri stic lines extend all the way-

down to the 1 - line. After the Lie) Us have coife to soi:e

quasi-equilibrium state, We may increase Ar, by cmnni~

our (13) and (C) integxations at the previous C slice.
B ,B ndEC aeitroa~dbt.ciIn other words, E r 11 an z r neplae ev~i

the old and iiev.' -values at

The conducti-vity a 2(1-1,J) in Figure A.1 is

updated according to BMICOND (Ref. 3). We modify its

incorporation into GEM, however, by integrating along the

proper characteristic,Eq. A.5c, rather thain along the line

of constant (the "frozen"t approximation).

To complete our description of GEM., we providc

aprescription for the source terms Jbz(r, ,C and Jb

The radial dependence of both are presumed to be known.
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For J 17'. 0 U .... t0 ! .C J v i !- ;.-*:. t L

r : d~-r ], p .'('f 'A] .' giv u.,n b y

(1 - / '- )C
by (rl: : , (t ) \,( § , ) ; 2 (. . .

3, t (1 r 1 ,) "

w,-,c t he. rad 21] cu of.' i, ~ :;c,; l1w - h, roi,],- cm

C = CtI; (. Sb)

The l~i~c . ,:WI P B -n i .Ii. ,; b¢ de fin :i. on , tc re]"I.1r1

Rb -C
1B P 

( A. S c-)

with the d "s-._!ncu:; 1) defilled by

11 r2
r

Once the cuto.,f coefficient is chosen (w-;ur: .. ca-.n'dini,

to the size and resolution of the radial th 13eInctt

coefficient C3 follows Cirectly fr.om Eqj. A . S c ad A .3

The normalization coefficient 1K, is set by the condtjioni

2
f JbZ d(ur2) N (CCr) v (§,) (A.9)

and is dependent only on CR. The beam charge per unit length

of pulse, N is related to the beam current lb by

= (A.lO)
V z(C',O

* A8



and to the beam chn rL,e (ICy) si!Ly Pb by

0

Thus, J bzis completely specifiec1 by 11, N, andl v

The radlial beami current. J. is a;umdto have-c

the form similar to Eqc. A. Sa

2 2 2
J br (r ,t,,) K N (C,r,) (l- /P(, ,i) (A .12a)

1 (+r2/,,

whecre Ne have assumed

The dot in Hdenotes the total Etilerian time derivative

of the rms-raclius:

dR (A.13)

The relation (A.12b) is a direct consequence of the

self -sim.,ilar expansion ansatz employed in thie derivat ion

of the rms-radial envelope equation (Ref. 3).
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SPec(-ified, as 1 ~~j~VIj 0. 1"~ iid< 1 ~ (

Wf it~ .1 -- IC J' 1KW 1)) (>'' 1,.C (I'I f j ) 1rC,

identical to the 111Wil) fo2'ma I :,ndi.'U '( in Rc~f. 3
VWe need en]I t rcp1ace2 the' totu :I L .C \ tiVj U'

~trnsfoi-i (A. 2.The rcvu i qut nd f fk-r frutI ( 7

in 11 IGAM bv the reqe reI~ntta.w nt t ln;1

new chiaracteri -iti c

r -(0= ) + Yr)(A.14)

and thalt the bc'ttron freue~c c. (Eq. 3.5, Ref. b ) ?

replaced by

2 e (z 0ji 14E)
.y .fir

-
z

whrc m i s theo b (amn pzr t Ic m a ss, and o is the

cectronic charge. The enve, lope equations -are solved

simultaneously using- 4th order flunge-Kutta.
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for tho u2'ncv~'~Im :1 1 1 L< h

V AdIopt.n (J !',,7 6

defiried -1o I)e- tlj; -! ~ e of hvwi~ 3e 2 u
2

in th ~ \'IL(V f ir 0, :- dyp Phe -i n

mcm- tr *5 ~l~. to the i:J j' i.Ie '-2 . VK

p yiA' (A 23

Bocau!se- we rnrna2 I ,,e f to1 th-e to .In uibcj o r-2prV ~2

in the sinnfie pulhe , we hav'e

(3
n rZ, t) f fcip (A. :-7,L)

and for the chiarc-e and current denol t los,

PbC rI,_ z, 0)=en (A. 1).7b)

3
Tbiz , t) = efv f dl)(A7)

We define the beam-char[ge Iine density by

N(z,t) f fPb 2 (P.) 18)
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it i-. con\%()I -I, . ,to in i' l u ... 0. . i , > " '

If Q rb CIr'' rc L I~nc vr :b e " ir rJc

I II t 1,, Co OV c t Jt c tf o i . ,01 1 cU t2.

Q h<'r>

f + 1- 3 0(If

1 Q>j (.) Ip (A.19:

rnd the I~li.t fole avFe isjust

+ 22

Q -}-J Qb drl1  (A.19i))

In thco do\,el (li;ont to foJ~i ov,', w,. P,23~KUc. tlh:t

S= <A> (A. 21

The goet rp ernt oe quntions of motion can be

derived by startin with the .ore-nt invarw ant, callisi on].-;s
Bc4 tzmann eq nt itonl

k n + V - Vfn+ F V f 0 (A.21)

where the Lorentz force F is just

Since we are interested in various momentum moments of A. 21,

we let Q(p) repres:ent som e function of p. After multiplying
3

(A.21) by Q and integrating over fdp , we have

.'-'t n <Q> + V • n <~v - n <F.. V >Q = 0 (A.23)

AI2t

i A/2



wherc \vo hiave u scd

--V 1 ;, :- 0
p

l'e no"; multiply 3 q. .A.2 by tLhe eiect ,''" >.itIc ch'r' e

and pe'fT,2'. the !'[':d 2. J . t'J. f('2 t') j.L1:1

< 'Q> k i > v' >.

WIe ha v e i.pod a Cjal-,y.;ctry aec( the cC (I tjIn

Lim r 3 b 0 (A .25

Finally, by performing the coordinate Iran;f ori::atjon

(A.2), ve have

N <Q> + <--NQ> - - <F-VpQ> 2G)a 60 0o "

To obtain a closed set of equations from

Eq. A.26, we proceed as follows. First, we substitute

thi-ee relations for Q:

Q=I, pz, and y (A.27)

where Pz ymv z For our particular applicaticn, we

treat vz as a functional of (y,v1 ) and Taylor expand the

<-> terms about the mean gamma y, where

Y -Y + 6y (A.28a)

and

= 0 (A.28b)
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and tile ("cC"ri' ie d i.e.

< v I;> = <V z > < z> (A.3:3)

This i2; ncess.arv to con p1oictIjc so!) 'atti ,i betwveen the

tra.n!;N'erLe and lon ,itudinal rode. The mcan tral!, verse

velocity is assumcd to bc

- R (A.3.1)

in keeping with the self-similar ansatz of the radial

envelope equation.
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WithI

v

N 14 q3 N (.f y, z (A.3

h 0

h 2 ME c-~- <re E B> + <(3 v~

h 3 - ~v 4 E + <eE V> (A 3 5 )
3 n) 0 C 3 -

where

-V 2 (A 36)

z z

The source terms (A .35e, A. 35f) are generated in GEM using

A15
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Ti I J c

I C

* N.. ~I t A)

C)e

r r

tler d i';rstc Ii s tazn c c tr avel cd hyr our Icr) --f, l

re f cren c fr ri n I theC ( di - .CL c i.-11 v:i ,'11. 1~ c.dr-l',

a Part iclil.r trof~es l~ C0 D~M IM 1,0IYl'cd fr thl

ori gin of the inovinf p frareo in th 1)0 fl-gD t ive z, 0 11rc CinnO

The c f rame- v 'o c j t y Ji s j i it i. ' I i, Ze'd to e' c:, 1 1. I p mca 1

v - ve Io c it 1 o f thec bea.tm tv ri ci Ics a t t --~ 0 'Not a these,
z

Coordi nates are still ill the laboiral ory fr'rnlc of reOferenee2cl

The result ing; li fferenco equations foll 1ow d irecti I v from

Eq.(A. 'J) of Aop . A after1 implos;ingr the( forMt] so] utionl

(A. 7) . The "characterist ic 1.ie"and the interpolat ion

schemne are a]lso described i n Append ix A.

-BIj



to th" I J e.c (I va Lu ilE alld N: -,t t iw

(LI ~J 1 1) ( 1Jl-) 1ncd (- d~

o uq v 'I t N) ou C.t (1i ()1 'Y I)' a

the rctuv il- o F('III, i' I2Ui (95 t< li( ::!I I

V)* U ill L J s 1--) I.u a d ;s ~i~ 1a1

Th i.- 15 l1 1 I i ''v d by re I)I aeing t.. hc1ii ie] ci i, I) I~ e(3 (5 1 V ;- a'si

Cill("] n Iod(I u um. j r1 trzrnsI o 1crm , i 0

z z

Si nc, we are ineetdin nunmerical nsV-I '

Set all I['-ea current souirce tenm:;; to Z(., Y. 81:50
a ssum i- e , a s v,. (10 ini G37-11, t h t Lco )d u c-t i v:1 L\ y cu win (, I: -155)

over the cIi, actc rist ic 1 Qn;o a iuleieh tr'

end result i~s a i fenrF, h)f~~i' U e
of equations fo1 the field( amplides Y , , and 1],

The cof f i cients of these f iol ci amp] .i tudes f orm a, .threeC'

dimensional mnatrix M. 1f the cohumnis of M corresp-qond to

iE fi and E ,respectively, then

B32
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M']. : S -A 3 ( (1- (" )-+ :,C K).
ii A

2 2 2  -C
M. - 2 1 i "1n (A/1") A ( ';

?B 1  = - -, 3 ((1-C B ) 2 + c )/I-

]22 1( Q -(1Cu) P/: cB/L)

M23 2 i -Jin ( /2) B 2 ( p +(:L-C 13 ) /k + c /13/:)

},31 = 0

I32 = i C1. s: in (T/2) ( C (- .. 1 C )/I -- cc/K)

M3 3 = P (l-C3(-Cc)/K)CJ CC!K

where

K -CX:p(i i;gAg)

K H h ArB

B3



and

cA

CB

ii c* 
(

with

A, (i-A 3 )/(C) Aj,/ )

A 2  A 1 A,- /2 0t Ar)

A 3 cxp (-- u l/f

3 C)

B1 3

B2  13 0~/2t r

C1  (1-C 3 ) /(oAr)

C 2 = C 1 Ar

c ~ 3) x (a
0

B4



d 1J

/7 376 7 !-. (-

0

The detormnilurln1: of 'Ams b z,,ro for l' ntiia o C

Thus, ve a-rive at our dli-pension rc].at3 on, ij e.

det M 0

B5



pmhc : . . ]i 8 It ,,

.J i I'

I i ~i r1 t '(o

in tc'rlf2 of k.., ],, Ar, .,, , , o and I . I (.,] (0 ,.

the foiJowii a'. al1. values '

Ar .01 (cm)

C = ,2 (cm)

'IT , Ir -T
krAr = /4, /2, /1

1 -0 -6 -4 -3 -2 ]-1 ] !

o .5, .7, 8, , 0 .99, 9 10

The time step A is increas:d un)til the stability cJrit. o i

SI <(1 + 1. x 10- )

is violated. (The root finding, algorithm permits a con-

vergence error of 10- 6.) Our partic ular cho-ce for Ar

and AC is set by the dimensional requirements of our pulse

profile. Note that we restrict the range of krAr and IhCA
above, rather than go fron 0 to 2-r. This is sufficient since

the remaining range would give the complex conjugate equation

where IW*l=V21.
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t 1 1 t, r 2(1 11 1 c V I I I ' Vj a i a

App, A. 'p- 'c 'ct P(m1I0.

1) 1b -.o ; o( I! c I I z I.I C: ( 1 , 1. .2 (100I2 it ( 2 2

bcyonid Ih I, ni a 01 poi ,iL t P.

Seconcl, \.C nol( 1 hai * f Vi'v l v''

)I :J2 I Th. 10 (I 1 oPO (2 l 01 C2Iilc, j' v \J 222 i

(mh1) / C,'. . 'Ih is to 11 .cay) ( (tf 1 11(1 1" .CJ

prop ~;t )I'l n a h i ;,II y conduct i g !;: (1,i wi; 11

vu-)r d s , ijl1;c !,-i caI ('7)'is be,) , 1 to dan.) 'ut f o I I o

point!s ar'ound cy I ('oc.

1.nd (3fi n a I] v c, c) rc oL PC ta t as i proc

0110, A 111i ) b c ci ns i r~ j fi tul c. 'I'l 11 in thoL 1i~i- P~i i

Nve ach ie(ve t he c l cri tcr.i for 4h hi( 1h- app vX i

mati on in CATHY.
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